Startseite » Technik » Forschung »

Integrierte Mikrochips als Nervennetz in elektronischer Haut

Künstliche Haut
Integrierte Mikrochips als Nervennetz in elektronischer Haut

Integrierte Mikrochips als Nervennetz in elektronischer Haut
Flexible elektronische Haut mit Magnetsensoren und komplexer elektronischer Schaltung, um die Magnetfeldverteilung zu erfassen (Bild: Masaya Kondo)
Forscher präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen damit eine wichtige Voraussetzung für die Entwicklung von elektronischer, beziehungsweise künstlicher Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet werden. Das funktioniert nur, weil die Hautoberfläche flexibel und bestens vernetzt ist. Schon lange versuchen Wissenschaftler, diese Eigenschaften auch auf künstliche Haut zu übertragen, um zum Beispiel Roboter oder Prothesen damit auszustatten. Im Vergleich zu menschlicher Haut könnte elektronische Haut sogar zusätzliche Fähigkeiten haben, zum Beispiel einen Orientierungssinn im Magnetfeld.

Ein großes Hindernis für die Verwirklichung einer funktionierenden elektronischen Haut stellt bisher noch die praktikable Vernetzung und Ansteuerung der einzelnen Sensoren dar. Erste Demonstratoren funktionieren so, dass jeder einzelne Sensor einer flächenhaften Anordnung separat kontaktiert und adressiert werden muss. Um die nötige Verkabelung zu umgehen, ist hier der Technologieschritt nötig, der seinerzeit die Schaltkreise zum integrierten Mikrochip gebracht hat: die Integration einzelner Magnetsensoren mit weiteren elektronischen Komponenten wie zum Beispiel Signalverstärker und die Entwicklung von vollintegrierten Systemen.

Robustes System für die elektronische Haut

Forscher aus Dresden, Chemnitz und Osaka stellen nun ein neues magnetisches Sensorsystem vor, das wegweisend für diese Integration ist. Es besteht aus einer Anordnung von 2 mal 4 Magnetsensoren, einem organischen Bootstrap-Schieberegister zur Ansteuerung der Sensormatrix und organischen Signalverstärkern. Das Besondere ist, dass alle elektronischen Komponenten auf organischen Dünnschichttransistoren basieren und in einer einzigen Plattform integriert sind.

Die Forscher konnten zeigen, dass das System eine hohe magnetische Empfindlichkeit aufweist und die zweidimensionale Magnetfeldverteilung in Echtzeit abbilden kann. Außerdem ist es sehr robust gegenüber mechanischer Verformung, wie Biegen, Knittern oder Knicken.

Neben der vollständigen Systemintegration ist auch die Verwendung von organischen Bootstrap-Schieberegistern ein wichtiger Entwicklungserfolg auf dem Weg zur elektronischen Haut.

Die Forscher wollen im nächsten Schritt die Anzahl der Sensoren pro Oberfläche erhöhen und die elektronische Haut auf größere Oberflächen ausdehnen.

Kontakt:
IFW
Helmholtzstr. 20
01069 Dresden
Telefon: +29 (0)351 4659–0
www.ifw-dresden.de

http://advances.sciencemag.org

Unsere Webinar-Empfehlung
Aktuelle Ausgabe
Titelbild medizin technik 2
Ausgabe
2.2024
LESEN
ABO
Newsletter

Jetzt unseren Newsletter abonnieren

Titelthema: PFAS

Medizintechnik ohne PFAS: Suche nach sinnvollem Ersatz

Alle Webinare & Webcasts

Webinare aller unserer Industrieseiten

Aktuelles Webinar

Multiphysik-Simulation

Medizintechnik: Multiphysik-Simulation

Whitepaper

Whitepaper aller unserer Industrieseiten


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de