Startseite » Technik » Forschung »

Ultradünne Deckschicht für Elektroden

Elektronik auf Kunststoffbasis
Ultradünne Deckschicht für Elektroden

Ultradünne Deckschicht für Elektroden
Andere elektronische Eigenschaften: Gold-Elektrode unbedeckt (li.) und mit einer monomolekulare Schicht Phthalocyanin (re.) (Bild: Felix Widdascheck)
Elektronik auf Kunststoffbasis – dem kommen Forscher nun näher: Elektrische Eigenschaften von Metallelektroden lassen sich präzise kontrollieren, wenn ihr eine extrem dünne organische Schicht aufliegt, die aus einer einzigen Lage von Molekülen besteht.

Organische Elektronik gilt als Technik der Zukunft: Ihre Bauteile lassen sich preisgünstig produzieren und erlauben neuartige Anwendungen, zum Beispiel Plastik-Verpackungen mit eingebauten Schaltkreisen. „Unsere Ergebnisse sind von großer Bedeutung für das wachsende Feld der organischen Elektronik, weil sie dazu beitragen können, die Effizienz von Bauelementen zu verbessern“, erklärt der Physikerprofessor Gregor Witte von der Philipps-Universität Marburg, der die Forschungsarbeiten leitete.

Die Bauelemente der Organischen Elektronik beruhen auf halbleitenden aromatischen Molekülen, die ähnlich zu Biomolekülen und Kunststoffen sind. „Ein zentrales Problem besteht dabei oft in dem elektrischen Kontaktwiderstand, der sich an der Grenzfläche zwischen Metallelektroden und organischem Halbleiter ergibt“, erläutert Witte.

Robuste Moleküle in Monolage

Das Team verwendete eine bestimmte Klasse organischer Moleküle, um sie als extrem dünne Schicht auf einkristalline Gold- und Silber-Elektroden aufzutragen. Damit verfolgte die Forschungsgruppe das Ziel, die elektronischen Eigenschaften an den Grenzflächen der Elektroden gezielt zu verändern, so dass sie zu organischen Halbleitern passen. Als Deckschicht oder „Contact Primer“ wählten Witte und sein Team chemische Verbindungen aus der Gruppe der Phthalocyanine.

„Diese kleeblattförmigen Moleküle sind sehr robust und werden bereits vielfältig als Farbstoff in Kunststoffen eingesetzt“, legt Wittes Mitarbeiterin und Koautorin Dr. Alrun Aline Hauke dar. Die Arbeitsgruppe schaffte es, die Verbindung als Monolage aufzutragen: Das ist eine Schicht, die nur aus einer einzigen Lage geordneter Moleküle besteht – etwa ein millionstel Mal so dick wie ein menschliches Haar.

So dünn das Deckmaterial auch ist – wirkungsvoll ist es allemal, wie das Forschungsteam durch Messungen nachwies: Über die prozentuale Bedeckung der Elektroden durch die Contact Primer lässt sich die Energie-Barriere exakt einstellen, die Elektronen beim Übergang vom Metall in einen organischen Halbleiter überwinden müssen. „Unterschiedliche Moleküle liefern dabei unterschiedlich starke Änderungen der Barriere“, ergänzt Erstautor Felix Widdascheck, der ebenfalls zu Wittes Arbeitsgruppe gehört.

Ansatz funktioniert in echter Fertigungsreihe

Aber wie verhält sich die Deckschicht außerhalb der Idealbedingungen im Labor? Das Team untersuchte deshalb, ob die beobachteten Änderungen auch auf polykristallinen Elektroden auftreten und einem Kontakt mit Luft standhalten. Lassen sich die Moleküle erneut korrekt anordnen, wenn sie durch Lufteinwirkung durcheinander geraten sind? „Ja, das geht“, führt Hauke aus: „Wir zeigen, dass die molekulare Ordnung durch Glühen der Probe unter Vakuumbedingungen weitgehend wiederhergestellt werden kann.“

Dieser Befund belege, dass der Ansatz auch in einer echten Fertigungsreihe funktionieren könne. „Dies ist das erste Mal, dass eine derartige Studie in dieser Detailtiefe durchgeführt wurde“, hebt Seniorautor Witte hervor. „Unsere Ergebnisse zeigen, dass mithilfe der richtigen Moleküle und bei sorgfältiger Präparation eine genaue Kontrolle der Grenzfläche zwischen Metall und Halbleiter möglich ist.“

https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808385

www.uni-marburg.de/de/fb13

Aktuelle Ausgabe
Titelbild medizin technik 6
Ausgabe
6.2024
LESEN
ABO
Newsletter

Jetzt unseren Newsletter abonnieren

Titelthema: 6G in der Medizin

6G in der Medizin: Vitalparameter in Echtzeit überwachen

Alle Webinare & Webcasts

Webinare aller unserer Industrieseiten

Aktuelles Webinar

Multiphysik-Simulation

Medizintechnik: Multiphysik-Simulation

Whitepaper

Whitepaper aller unserer Industrieseiten


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de