Kurzglasfaserverstärkte, thermoplastische Spritzgussformteile ersetzen immer häufiger herkömmliche aus Stahl oder Aluminium. Typische Einsatzgebiete für solche Spritzgussformteile sind die Automobilindustrie oder auch die Luft- und Raumfahrt. Insbesondere im Automobilbau, der große Stückzahlen in kürzester Zeit fordert, stellt der Spritzgussprozess ein effizientes Herstellungsverfahren von Kunststoffen dar, welches zudem hohe Gestaltungsfreiräume ermöglicht. Jedoch bleibt die Vorhersage der Faserorientierung, die sich durch Prozess, Material und Geometrie lokal einstellt, eine große Herausforderung. Sie ist noch immer Stand aktueller Forschungsarbeiten.
Das Fraunhofer LBF hat nun ein Verfahren entwickelt, um die Faserorientierung von kurzglasfaserverstärkten Spritzgussformteilen schon in einer Phase zu berücksichtigen, in der noch keine Bauteile wie etwa Prototypen vorliegen. Das phänomenologische Berechnungskonzept schließt eine große Lücke in der Auslegungskette solcher Formteile. Mithilfe des Konzeptes ist es möglich, schon frühzeitig in der Bauteilentwicklung das richtungsabhängige Bauteilverhalten auf Formelemente abzuschätzen und das Bauteil belastungsgerecht auszulegen.
Schnellere Entwicklung
Das reduziert kostspielige Iterationsschleifen und verkürzt folglich die komplette Entwicklung und Fertigung. Darüber hinaus kann das Konzept auch in Bereichen angewendet werden, in denen bislang die Integrative Simulation zu kosten- oder zeitintensiv war. Abhängig vom geforderten Detaillierungsgrad kann das neue Verfahren als eigenständige Lösung der Bauteilauslegung oder als vorgelagerte Ergänzung für die Integrative Simulation angesehen werden.
Anders als in vollintegrativen Ansätzen erfolgt die Zuordnung der Faserorientierung bei dem vom Fraunhofer LBF entwickelten Verfahren nicht auf Basis von Finite-Elementen, sondern anhand von Formelementen oder signifikanten Bereichen. Dies können beispielsweise Rippen, Dome oder flächige Bereiche sein.