Forscher haben einen berührungsempfindlichen Sensor entwickelt, dessen Form und Größe jeder mit der Schere ändern kann. Dank spezieller Anordnung der gedruckten Schaltkreise funktioniert die Elektronik trotz Schnitten weiter.
Ist eine Hose zu lang, wird sie gekürzt, passt ein Brett nicht in ein Regal, wird es zurechtgesägt. Bei Materialien wie Stoff oder Holz ist dies ganz normal, in Zukunft soll dies auch für Elektronik gelten, so die Vision Saarbrücker Informatiker. Zusammen mit Forschern des US-amerikanischen MIT Media Lab haben sie einen berührungsempfindlichen Sensor entwickelt, dessen Form und Größe jeder mit der Schere nach Belieben ändern kann.
„Stellen Sie sich vor, ein Kind nimmt das von uns entwickelte Sensor-Papier und schneidet sich eine Blume in Form einer Blüte samt Stiel und Blättern aus. Berührt es nun die Blüte, ertönt das Brummen einer Hummel“, beschreibt Jürgen Steimle eine mögliche Anwendung. Für die Zukunft seien auch zahlreiche einfache Programme oder Apps denkbar. Steimle ist 33 Jahre alt, promovierter Informatiker und forscht am Max-Planck-Institut für Informatik in Saarbrücken. Er leitet außerdem eine Forschungsgruppe am Exzellenzcluster der Saar-Uni.
Sein Doktorand Simon Olberding, der den Sensor federführend entwickelt hat, sieht eine Anwendung auch in interaktiven Wänden, die man für Diskussionen einsetzt: „Durch das Zurechtschneiden und Aufkleben der neuartigen Sensor-Folie könnte man die Oberfläche interaktiv gestalten, egal ob es sich dabei um das Armband einer Uhr, eine Decke auf einem Messetisch oder die Tapete an einer Wand handelt.“
Als Basistechnologie dient den Wissenschaftlern sogenannte „Gedruckte Elektronik“. Unter diesem Begriff fasst man Bauelemente, Komponenten und Anwendungen zusammen, die teilweise oder sogar vollständig gedruckt werden. „Die Herstellungskosten dafür sind inzwischen so gering, dass der Druck unserer Folie im DIN-A4-Format auf einem Spezialdrucker im Labor nur knapp einen US-Dollar kostet“, so Steimle.
Doch das alleine reichte nicht aus, um den Sensor unverwundbar gegen Schnitte, Beschädigungen und das Abtrennen ganzer Bereiche zu machen. „Es war nicht leicht eine Anordnung zu finden, die für unsere Zwecke robust genug ist“, erklärt Olberding. Die Forscher fanden zwei Grundlayouts: Bei der so genannten Stern-Topologie sitzt die Steuereinheit im Zentrum und ist von dort aus mit jeder Elektrode separat verbunden. Bei der Baum-Topologie sitzt die Steuereinheit ebenfalls in der Mitte und ist auch mit jeder Elektrode verbunden. Allerdings bilden hier die Drähte erst alle einen horizontalen Ast und verzweigen sichdann, um ihre jeweilige Elektrode zu erreichen.
„Wir wollen eine neue Art von Material schaffen, das Anwender zum Beispiel in Schreibwaren-Abteilungen kaufen können. Es soll so preiswert sein, dass sie dieses für interaktive Anwendungen oder auch nur als Schreibunterlage nutzen können“, so Steimle.
Weitere Informationen: Seite des MPI für Informatik Publikation der Forscher Video
Unsere Whitepaper-Empfehlung
Teilen: