Musik genießen, Melodien erkennen oder das Zuhören in einer Umgebung mit vielen Hintergrundgeräuschen – das ist immer noch schwierig für Menschen, die beim Hören auf Hörprothesen, so genannte Cochlea-Implantate, angewiesen sind. Denn diese sind in der genauen Übertragung feiner Abstufungen der Tonhöhe (Frequenz) limitiert. Für die Betroffenen bedeutet dies Schwierigkeiten bei der Sprachwahrnehmung in Umgebungen mit Hintergrundgeräuschen und beim Erkennen von Melodien.
Die Hörbahn mittels Licht stimulieren
Hörforscher zeigen nun, dass sich die Qualität des künstlichen Hörens maßgeblich verbessern ließe, wenn die Hörbahn mittels Licht statt mit elektrischem Strom stimuliert wird. Dazu haben Wissenschaftler um Prof. Tobias Moser das Auflösungsvermögen für Tonhöhen beim natürlichen sowie künstlichen Hören gemessen und bestimmt. Moser ist Direktor des Institutes für Auditorische Neurowissenschaften an der Universitätsmedizin Göttingen (UMG) sowie Leiter der Forschungsgruppe Auditorische Neurowissenschaften und Optogenetik am Deutschen Primatenzentrum – Leibniz-Institut für Primatenforschung (DPZ). Dabei verglichen sie die in Göttingen entwickelte Anregung des Hörnervs mittels Licht (optogenetische Anregung) mit natürlichem Hören und dem Hören mit Hilfe des etablierten elektrischen Cochlea-Implantats im Tiermodell. Über die Untersuchung der Nervenaktivität im Mittelhirn gewannen die Wissenschaftler vergleichbare Daten über das Auflösungsvermögen für Tonhöhen (Frequenz) bei akustischem, optischem und elektrischem Hören.
Fast so gut wie natürliches Hören
Die Wissenschaftler des Göttingen Campus kommen in ihrer Studie zu dem Ergebnis, dass die künstliche Anregung der Hörbahn mittels Licht eine wesentlich höhere Auflösung als die Anregung mittels Strom ermöglicht. Bei niedrigen Anregungsintensitäten war die Tonhöhenauflösung ihren Untersuchungen zufolge sogar so gut wie beim natürlichen Hören.
„Ein logischer nächster Schritt ist für uns nun, die Stimulation auf mehr Kanäle zu erweitern. In den bisherigen Untersuchungen haben wir die Einkanalstimulation eingesetzt. Nun wollen wir mittels Mikroleuchtdioden-Arrays über mehrere Kanäle stimulieren“, sagt Dr. Marcus Jeschke, Nachwuchsgruppenleiter am DPZ und am Institut für Auditorische Neurowissenschaften der UMG, einer der korrespondierenden Autoren der Studie. „So möchten wir untersuchen, ob die Aktivierungen nahe beieinander liegender LEDs unterschieden werden können und wie und ob die Aktivierungen der einzelnen LEDs interagieren“, so Jeschke weiter.
„Wenn künftige Tierversuche unsere Ergebnisse bestätigen, und die Biosicherheit unserer Technologie nachgewiesen wird, haben wir Hoffnung, dass optische Cochlea-Implantate künftig auch bei Menschen eingesetzt werden können“.
www.nature.com/articles/s41467–019–09980–7
www.innerearlab.uni-goettingen.de
www.auditory-neuroscience.uni-goettingen.de/OptoHear.html