Die Entwicklung dreidimensionaler Mikroelektronik mit exzellenter Leistungsfähigkeit stellt Wissenschaftler sowie Ingenieure gleichermaßen vor enorme Herausforderungen. Nach neuen Verfahren wird händeringend gesucht. Ein solches Verfahren ist zum Beispiel das selbstorganisierte Falten von mikroelektronischen Nanomembranen, das aber starken statistischen Schwankungen unterliegt. Darunter leidet die Ausbeute und Zuverlässigkeit so genannter mikroskopischer Origami-Strukturen, die den hohen Ansprüchen der Mikroelektronik nicht genügen. Daher ist es nicht verwunderlich, dass sich noch kein industriell einsetzbares Verfahren etabliert hat, das eine zuverlässige und kostengünstige Produktion von selbstorganisierten dreidimensionalen Bauelementen ermöglicht.
Magnetische Fernsteuerung
Wissenschaftler um Prof. Oliver G. Schmidt stellen nun eine neue Möglichkeit vor, Nanomembranen zu dreidimensionalen mikroelektronischen Bauelementen zu falten. Oliver G. Schmidt leitet im Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden das Institut für Integrative Nanowissenschaften und hat als Professor für Materialsysteme an der Technischen Universität Chemnitz das dortige Zentrum für Materialien, Architekturen und Integration von Nanomembranen (MAIN) initiiert.
In dem Verfahren nutzen die Forscher die denkbar einfachste Möglichkeit des Faltens, nämlich das bekannte und seit vielen Jahren etablierte Aufwickeln der Nanomembranen. Zentraler neuer Bestandteil ist die Entwicklung einer Art magnetischer Fernsteuerung, mit der sich der Falt- oder Aufwickelprozess durch ein von außen angelegtes Magnetfeld programmieren und gezielt steuern lässt. Zum ersten Mal ist es gelungen, die dreidimensionale Anordnung von Nanomembranen reproduzierbar und kontrolliert über große Längenskalen im Bereich von Zentimetern zu realisieren und dabei eine Ausbeute von mehr als 90 % zu erreichen.
Leichte Mikro-Energiespeicherelemente
Mit dieser neuen Methode von magnetischen Origami-Strukturen haben die Forscher dreidimensionale Mikro-Energiespeicherelemente hergestellt, die exzellente Kenndaten aufweisen und extrem leicht und kompakt sind. Diese Ergebnisse zeigen das Potenzial der magnetfeldunterstützten Faltung von Nanomembranen.
Die Vorteile des magnetischen Mikro-Origami kommen ganz besonders zum Tragen, wenn gut ausgerichtete dreidimensionale Strukturen mit vielen Wicklungen von Nanomembranen erforderlich sind. Dies ist zum Beispiel bei neuartigen Mikrobatterien oder passiven elektronischen Bauelementen wie Kondensatoren, Induktoren und Transformatoren der Fall.
www.nature.com/articles/s41467–019–10947-x