Um das Konnektom, den „Schaltplan“ eines Gehirns zu erstellen, erfassen Neurobiologen das Gehirn mit Hilfe dreidimensionaler Elektronenmikroskopie-Aufnahmen. Die Bildanalyse größerer Bereiche durch den Menschen würde jedoch trotz erheblicher Computer-Unterstützung Jahrzehnte dauern. Helfen könnten hier künstliche neuronale Netze. Im Vergleich zum Gehirn benutzen sie stark vereinfachte „Nervenzellen“. Dennoch hat die darauf basierende künstliche Intelligenz bereits unzählige Anwendungen gefunden: vom autonomen Fahren über die Qualitätskontrolle bis hin zur Diagnose von Krankheiten. Bei sehr komplexen Aufgaben, wie dem Herausarbeiten einzelner Nervenzellen mit all ihren Verästelungen und Kontaktstellen aus einer dreidimensionalen Bildaufnahme eines Gehirns, waren die Algorithmen bisher jedoch zu ungenau.
Bisher dauerte es einfach zu lange
„Die Zellstrukturen, die der Computer aus unseren elektronenmikroskopischen Aufnahmen generierte, hatten einfach viel zu viele Fehler“, berichtet Jörgen Kornfeld vom Max-Planck-Institut für Neurobiologie in Martinsried. „Um damit etwas anfangen zu können, musste alles nochmals ‚korrekturgelesen‘ werden.“ Das nimmt viel menschliche Arbeitszeit in Anspruch: Ganze elf Jahre würde das Überprüfen eines Bilderstapels mit gerade mal 0,1 Millimetern Kantenlänge dauern. „Daher mussten wir etwas Besseres erfinden“, so Kornfeld. Besser als alles andere sind — zumindest derzeit – die flood-filling networks (FFNs), die Michal Januszewski zusammen mit seinen Kollegen bei Google A.I. entwickelt.
Ein Datensatz aus dem Singvogelhirn, den Kornfeld schon vor Jahren aufgenommen und teilweise von Hand analysiert hatte, spielte bei dieser Entwicklung eine wichtige Rolle. Die wenigen, vom Menschen sorgfältig analysierten Zellen, stellen die Referenzdaten (ground truth) dar, anhand derer die FFNs erst lernten zu erkennen, wie ein richtiger Nervenzellausläufer aussieht, um mit dem Gelernten dann in Windeseile den Rest des Datensatzes zu kartieren. Die Entwicklung der FFNs steht, so sehen es die Wissenschaftler, als Symbol für einen Wendepunkt in der Konnektomik. Die Geschwindigkeit der Datenanalyse hinkt nun nicht mehr der elektronenmikroskopischen Aufnahmegeschwindigkeit hinterher.
Menschliche Korrekturlesezeit wird eingespart
FFNs gehören zu den „Convolutional neural networks“, einer speziellen Klasse von Algorithmen des automatischen Lernens. FFNs besitzen jedoch einen internen Rückkoppelungspfad, der es ihnen erlaubt auf bereits im Bild Erkanntes aufzubauen.
Inzwischen scheint es nicht mehr völlig undenkbar, wirklich große Datensätze, bis hin zu einem gesamten Maus- oder Vogelhirn, aufzunehmen und zu analysieren. „Die Hochskalierung wird technisch sicher anspruchsvoll, aber im Prinzip haben wir jetzt im Kleinen demonstriert“, sagt Jörgen Kornfeld, „dass alles Nötige für die Analyse bereitsteht.“