Wie in der Dreigroschenoper von Bertold Brecht galt bisher auch in der Zelle: „… und man siehet die im Lichte. Die im Dunkeln sieht man nicht.“ Doch nun macht ein Forscherteam unter der Leitung von Prof. Sarah Köster und Prof. Tim Salditt vom Institut für Röntgenphysik auch die Zellbestandteile, die im Dunkeln liegen sichtbar. Dazu „heften“ die Forscher sogenannte Leuchtmoleküle an die Zellmoleküle. Durch das kontrollierte Hell- und Dunkelschalten der Leuchtmoleküle in Teilbereichen des Bildes lassen sich Zellmoleküle trennscharf lokalisieren und ihre Wechselwirkungen darstellen. Um auch die nicht-beleuchteten Bestandteile der Zelle abzubilden, arbeitete das Göttinger Team mit einem speziellen Mikroskopieverfahren. Dieses kombiniert ein Lichtmikroskop nach dem STED-Prinzip (Stimulated Emission Depletion), welches den beleuchteten Bereich der Zelle darstellt, mit einem Röntgenmikroskop, welches den nicht beleuchteten Bereich der Zelle darstellt.
Besseres Verständnis von Herzmuskelzellen
„Mit dem neuartigen Röntgen-STED-Mikroskop haben wir Herzmuskelzellen aufgenommen“, erklärt Marten Bernhardt, Erstautor der Veröffentlichung. „Die darin enthaltenen Proteinnetzwerke wurden im STED-Modus abgebildet. Diese STED Aufnahmen konnten wir dann in die Röntgenaufnahmen der Zelle einpassen. Beide Aufnahmen werden praktisch direkt hinter einander aufgenommen“, so Bernhardt. „Durch die komplementären Kontraste versprechen wir uns ein vollständigeres Verständnis der Kontraktion von Herzmuskelzellen und ihrer Krafterzeugung‘‘, ergänzt Salditt.
Dynamische Prozesse in lebenden Zellen sehen
Bei der Konzeption des STED-Mikroskops arbeiteten die Wissenschaftler eng mit dem Deutschen Elektronen-Synchrotron DESY, einem Forschungszentrum der Helmholtz-Gemeinschaft, und der von Nobelpreisträger Prof. Stefan W. Hell gegründeten Firma Abberior zusammen. „In Zukunft wollen wir so auch dynamische Prozesse in lebenden Zellen beobachten‘‘, schließt Köster, Sprecherin des Göttinger Sonderforschungsbereich „Kollektives Verhalten weicher und biologischer Materie“, in dessen Forschungsprogramm die Experimente integriert sind.
www.uni-goettingen.de/de/3240.html?id=5125