Seit Jahren arbeitet die medizinische Forschung an individuell passgenauen Medikamenten und Therapien für jeden Menschen, mit dem Ziel einer personalisierten Medizin. Dabei setzt sie so genannte digitale Zwillinge ein, die mit Algorithmen und Daten den Stoffwechsel simulieren. Die dabei entwickelten Modelle berücksichtigen auch die Dynamik einzelner Organe . Für Erwachsene gibt es bereits einige „digital twins“, für Säuglinge indes fehlten bislang solche Modelle. Dabei unterscheidet sich der Stoffwechsel von Babys erheblich von dem Erwachsener.
Ein internationales Team von Forschenden der Universität Heidelberg, des Heidelberger Instituts für Theoretische Studien (HITS), des Universitätsklinikums Heidelberg und der University of Galway, Irland, hat nun mathematische Modelle entwickelt, die die gesundheitliche Entwicklung von Neugeborenen in den kritischen ersten 180 Lebenstagen simulieren. Die Modelle decken den organspezifischen Stoffwechsel von weiblichen und männlichen Babys ab und integrieren 26 Organe, sechs Zelltypen und mehr als 80 000 Stoffwechselreaktionen.
Spurensuche im Stoffwechsel
„Säuglinge sind keine kleinen Erwachsenen. Sie weisen spezielle metabolische Eigenschaften auf, die für ihre Entwicklung und ein gesundes Wachstum kennzeichnend sind“, erklärt Elaine Zaunseder vom HITS und der Universität Heidelberg). Sie ist Erstautorin der Studie.
So haben Neugeborene im Verhältnis zu ihrer Körperoberfläche wesentlich weniger Masse als Erwachsene und benötigen deshalb mehr Energie für die Regulierung der Körpertemperatur. Sie können aber in den ersten sechs Lebensmonaten nicht zittern, so dass Stoffwechselprozesse dafür sorgen müssen, dass der Säugling warm bleibt.
„Ein wesentlicher Teil unserer Arbeit bestand deshalb darin, diese Stoffwechselprozesse zu identifizieren und in mathematische Konzepte zu übersetzen, die im Modell angewendet werden können“, so Zaunseder. Sie forscht am Engineering Mathematics and Computing Lab (EMCL) am IWR der Universität Heidelberg und ist Mitglied der Data Mining and Uncertainty Quantification Gruppe am HITS. Die Studie entwickelte sie gemeinsam mit Forschenden der School of Medicine an der Universität von Galway und der Klinischen Forschungsgruppe in der Sektion Neuropädiatrie und Stoffwechselmedizin des Universitätsklinikums Heidelberg.
Mathematik hilft Medizin
Die komplexen Reaktionen und Beziehungen im Stoffwechsel lassen sich als Graph verstehen, der mathematisch in eine so genannte stoichiometrische Matrix übersetzt wird. Diese Matrix enthält alle Informationen über die Metaboliten, also chemische Verbindungen, die in den Reaktionen der einzelnen Organe entstehen.
Die verschiedenen Organe sind metabolisch und im Modell über den Blutfluss verknüpft. Die Forschenden nutzen die Matrix, um ein lineares Optimierungsproblem im Stoffwechselmodell zu definieren.
Dieses Problem maximieren sie für Zellwachstum in den Organen und damit für das Körperwachstum des Babys und lassen es von einem Optimierungsalgorithmus lösen. Damit können sie wiederum die Flüsse durch die Stoffwechselreaktionen berechnen. „Zur weiteren Verfeinerung des Modells haben wir reale Daten von Neugeborenen, einschließlich physiologischer Parameter, Geschlecht, Geburtsgewicht und Metabolitkonzentrationen, verwendet und die Modelle entsprechend personalisiert“, führt Zaunseder aus.
Präzisionsmedizin vorantreiben
Mathematisch beschreibt Zaunseder das Babymodell als lineares Optimierungsproblem. Die Forschung des Teams zielt darauf ab, die Präzisionsmedizin mithilfe von computergestützten Modellen voranzutreiben. Die Forschenden bezeichnen die computergestützte Modellierung von Säuglingen als zukunftsträchtig, da sie das Verständnis des kindlichen Stoffwechsels verbessert. Auch bietet sie Möglichkeiten zur Verbesserung der Diagnose und Behandlung von Krankheiten in den ersten Lebenstagen eines Säuglings, wie beispielsweise seltener Stoffwechselkrankheiten.
„Diese Arbeit ist ein erster Schritt zur Erstellung digitaler metabolischer Zwillinge für Säuglinge, die einen detaillierten Einblick in ihre Stoffwechselprozesse bieten“, fasst Elaine Zaunseder zusammen. „Die digitalen Zwillinge haben das Potenzial, die pädiatrische Gesundheitsversorgung zu revolutionieren, indem sie ein maßgeschneidertes Krankheitsmanagement für den individuellen Stoffwechsel jedes Kindes ermöglichen.“
Hilfe bei seltenen Stoffwechselerkrankungen
Das bestätigt auch Georg Friedrich Hoffmann, Direktor des Zentrums für Kinder- und Jugendmedizin am Universitätsklinikum Heidelberg und Ordinarius an der Medizinischen Fakultät Heidelberg: „Gerade bei seltenen angeborenen Stoffwechselerkrankungen könnten Digitale Zwillinge die Versorgung von schwer, oft lebensbedrohlich erkrankten Kindern zukünftig wesentlich verbessern.“ Selbst an hoch spezialisierten Zentren, an denen seltene Erkrankungen idealerweise behandelt werden, gebe es oft wenig Erfahrung mit den Auswirkungen spezieller Therapien und Eingriffe auf den einzelnen Patienten. „Eine Simulation therapeutischer Maßnahmen mit Hilfe eines Digitalen Zwillings würde wesentlich präzisere Behandlungsmöglichkeiten schaffen.“
Kontakt:
Universität Heidelberg
Elaine Zaunseder
Engineering Mathematics and Computing Lab (EMCL)
www.h-its.org/de/people/elaine-zaunseder/
https://pubmed.ncbi.nlm.nih.gov/38834070/
www.h-its.org