Der 3D-Druck hat nicht nur in der Produktion Einzug gehalten, auch in der regenerativen Medizin gewinnt er zunehmend an Bedeutung: Mittels 3D-Druck lassen sich maßgeschneiderte bioverträgliche Gewebegerüste erzeugen, die in Zukunft irreparabel geschädigtes Gewebe ersetzen sollen. Auch am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart arbeitet ein Forscherteam daran, biologische Implantate per 3D-Druckverfahren im Labor herzustellen. Schicht für Schicht drucken die Wissenschaftler Flüssigkeiten, bestehend aus Biopolymeren wie Gelatine oder Hyaluronsäure, wässrigem Nährmedium und lebenden Zellen, bis ein 3D-Objekt entstanden ist, dessen Form zuvor programmiert wurde. Diese Biotinten bleiben während des Drucks fließfähig, danach werden sie mit UV-Licht bestrahlt, wobei sie zu Hydrogelen, sprich wasserhaltigen Polymernetzwerken, vernetzen.
Biomoleküle gezielt chemisch modifizieren
Die Biomoleküle lassen sich gezielt chemisch modifizieren, sodass die resultierenden Gele unterschiedliche Festigkeiten und Quellbarkeiten aufweisen. Somit können Eigenschaften von natürlichen Geweben nachgebildet werden – von festem Knorpel bis hin zu weichem Fettgewebe. Das Spektrum an einstellbarer Viskosität ist breit. „Wir formulieren Tinten, die verschiedenen Zelltypen und damit auch verschiedenen Gewebestrukturen möglichst optimale Bedingungen bieten“, sagt Dr. Kirsten Borchers, Verantwortliche für die Bioprinting-Projekte in Stuttgart.
In Kooperation mit der Universität Stuttgart ist es unlängst gelungen, zwei unterschiedliche Hydrogel-Umgebungen zu schaffen: Zum einen festere Gele mit mineralischen Anteilen, um Knochenzellen bestmöglich zu versorgen, und zum anderen weichere Gele ohne mineralische Anteile, um Blutgefäßzellen die Möglichkeit zu geben, sich in kapillarähnlichen Strukturen anzuordnen.
Knochen- und Vaskularisierungstinte
Auf Basis ihres verfügbaren Materialbaukastens konnten die Forscher „Knochentinte“ herstellen – die darin verarbeiteten Zellen sollen in die Lage versetzt werden, das Originalgewebe zu regenerieren, also selbst Knochengewebe zu bilden. Das Geheimnis der Tinte ist eine spezielle Mischung aus dem pulverförmigen Knochenmineral Hydroxylapatit und Biomolekülen.
Die „Vaskularisierungstinte“ wiederum bildet weiche Gele, in der sich Kapillarstrukturen etablieren konnten. Hierbei werden Zellen, die Blutgefäße bilden, in die Tinten eingebracht. Die Zellen bewegen sich, wandern aufeinander zu und formen Anlagen von Kapillarnetzwerken aus kleinen röhrenförmigen Gebilden. Würde dieser Knochenersatz implantiert, so würde der Anschluss des biologischen Implantats an das Blutgefäßsystem des Empfängers wesentlich schneller funktionieren als bei Implantaten ohne kapillarähnliche Vorstrukturen, wie in der Literatur nachzulesen ist. „Ohne Vaskularisierungstinte ist erfolgreicher 3D-Druck von größeren Gewebestrukturen vermutlich nicht möglich“, sagt Weber.
Jüngstes Forschungsprojekt des Stuttgarter Forscherteams ist die Entwicklung von Matrices für die Regeneration von Knorpel.