Startseite » Technik » Forschung »

Materialwissenschaften: Vibrierendes Display und virtuelle Buttons

Touchscreens mit weiterer Dimension
Wenn der Screen den Finger antippt

Wenn der Screen den Finger antippt
Die Ingenieure Sophie Nalbach und Steffen Hau mit dem ersten Touchscreen, der an die Fingerspitzen klopft (Bild: Oliver Dietze)
Ingenieure entwickeln eine federleichte, dünne Silikonfolie für Touchscreens, die stufenlos verschiedene Stellungen und Höhen hält. Sie kann klopfen, drücken, stoßen und vibrieren. Auch hat sie Sensoreigenschaften und wird so zum Sinnesorgan des jeweiligen Geräts.

Fährt der Smartphone-Nutzer mit der Fingerspitze über das Display, ist da an einer Stelle plötzlich ein Klopfen. Darunter entsteht wie von Zauberhand ein Button. Oder der Nutzer folgt dem Signal, das seinen Finger leitet, und er findet den Knopf auf diese Weise. Mit der neuen Technologie, die das Ingenieurteam von Prof. Stefan Seelecke am Lehrstuhl für Intelligente Materialsysteme der Universität des Saarlandes und am Zentrum für Mechatronik und Automatisierungstechnik entwickelt hat, können Buttons bei Bedarf überall auf dem Bildschirm entstehen und verschwinden. Durch Vibration, Klopfen oder Stöße an die Fingerkuppe kann das Display seinen Nutzer zu ihnen führen. Damit eröffnen sich bei Computerspielen, der Internetsuche und auch für Navigationsgeräte neue Möglichkeiten.

Eine auf den ersten Blick unspektakuläre Silikonfolie – nicht unähnlich der handelsüblichen Frischhaltefolie – legt die Basis für so eine neue Generation von Displays. „Es handelt sich bei der Folie um ein so genanntes dielektrisches Elastomer“, erklärt Prof. Stefan Seelecke, dessen Arbeitsgruppe für die Folien auf internationalen Konferenzen bereits mehrfach ausgezeichnet wurde.

Membran mit elektrisch leitfähiger Schicht

Die Ingenieure drucken hierbei auf eine hauchfeine Kunststoff-Membran eine elektrisch leitfähige Schicht auf. Dadurch können sie eine elektrische Spannung anlegen: Die „Elektroaktivität“ der Folie bedeutet, dass sie sich in der einen Richtung zusammenziehen und in die andere Richtung dehnen kann. „Aufgrund der elektrostatischen Anziehungskräfte drückt sich das Polymer zum Beispiel zusammen und dehnt sich nach außen hin aus“, erläutert Steffen Hau, promovierter Ingenieur aus Seeleckes Team. Verändert der Forscher das elektrische Feld, vollführt die Folie verschiedenste Choreografien und gibt beliebige Signale: vom hochfrequenten Vibrieren über spezifische Impulse wie bei einem Herzschlag bis hin zu stufenlosen Hub-Bewegungen. In ihrem Prototyp haben die Forscher die Folien mit einem Smartphone-Display kombiniert. Sie lassen so nicht nur virtuelle Buttons entstehen, sondern eröffnen dem Display zusätzliche Funktionen.

Display mit sensorischen Eigenschaften

Mit einer Regelung über Algorithmen wird aus dem Stück Kunststoff ein technisches Bauteil, das die Ingenieure gezielt ansteuern können. „Wir setzen dabei die Folie selbst als Positions-Sensor ein. Das Display hat damit zugleich sensorische Eigenschaften. Weitere Sensoren benötigen wir nicht“, sagt Steffen Hau. Die Forscher können jede einzelne Stellung der Folie exakt den entsprechenden Messwerten der elektrischen Kapazität zuordnen. „Dadurch wissen wir immer, wie sich das Polymer gerade verformt. Mit den Messwerten der elektrischen Kapazität können wir auf die jeweilige mechanische Auslenkung der Folie rückschließen. Indem wir die elektrische Spannung verändern, können wir die Folie präzise ansteuern“, erklärt Hau. In einer Regelungseinheit lassen sich die Bewegungsabläufe exakt vorausberechnen und programmieren.

Günstige Herstellung

„Da die Technologie ohne seltene Erden oder Kupfer auskommt, ist sie günstig in der Herstellung, verbraucht sehr wenig Energie und ist sehr leicht“, ergänzt Prof. Seelecke. Die Ingenieure suchen jetzt auf der Hannover Messe vom 1. bis 5. April am saarländischen Forschungsstand in Halle 2, an Stand B 46 Partner aus der Industrie, um ihr Verfahren in die Produktion zu bringen.

Unsere Webinar-Empfehlung
Aktuelle Ausgabe
Titelbild medizin technik 2
Ausgabe
2.2024
LESEN
ABO
Newsletter

Jetzt unseren Newsletter abonnieren

Titelthema: PFAS

Medizintechnik ohne PFAS: Suche nach sinnvollem Ersatz

Alle Webinare & Webcasts

Webinare aller unserer Industrieseiten

Aktuelles Webinar

Multiphysik-Simulation

Medizintechnik: Multiphysik-Simulation

Whitepaper

Whitepaper aller unserer Industrieseiten


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de