Startseite » Technik » Forschung »

3D-Druck – durchgängig simuliert

Additive Fertigung
3D-Druck – durchgängig simuliert

3D-Druck – durchgängig simuliert
Bildliche Darstellung einer so genannten Raytracing-Simulation des Laser Powder Bed Fusion Prozesses (Bild: Fraunhofer IWM)
Im 3D-Druck per Laserstrahlschmelzen ist es mitunter schwierig, die optimalen Prozessparameter zu bestimmen. Forschende simulieren daher den Prozess auf der Mikrostrukturskala, um direkte Zusammenhänge zwischen Werkstückeigenschaften und gewählten Prozessparametern erkennen. Dafür kombinieren sie verschiedene Simulationsmethoden miteinander.

Der 3D-Druck bietet zahlreiche Vorteile – insbesondere lassen sich damit Material und Energie einsparen, auch sind komplexe Bauteilgeometrien und individualisierte Produkte möglich. Ein weit verbreitetes Verfahren, um Bauteile und Werkzeuge additiv herzustellen, ist das pulverbettbasierte Laserstrahlschmelzen, das „Laser Powder Bed Fusion-Verfahren“, kurz LPBF: Es punktet mit kurzen Innovationszyklen und hoher Wirtschaftlichkeit. Das Prinzip: Ein bis zu 50 µm dickes Pulverbett wird punktgenau via Laser erhitzt. Das Pulver verflüssigt sich, schmilzt zusammen und erhärtet zu einer festen Struktur, sobald der Laser weiterwandert. Dort, wo der Laserstrahl nicht auf das Pulver trifft, bleibt die pulverförmige Konsistenz bestehen. Dieser Prozess wird zahlreiche Male wiederholt, auf diese Weise wächst das Bauteil Schicht für Schicht in die Höhe.

Wichtig ist, dass das fertige Bauteil eine Dichte von 100 % hat, keine Poren aufweist und die jeweils neu aufgebrachte Schicht fest auf der unteren haftet. Dies gelingt über die Einstellung der Prozessparameter, etwa die Geschwindigkeit und die Leistung des Lasers. Besonders wichtig für die Eigenschaften des Werkstücks ist die Mikrostruktur aus metallischen Körnern. Diese haben großen Einfluss auf die mechanischen Eigenschaften, etwa das Elastizitätsmodul des Werkstoffs oder die Fließspannung – also die Belastung, ab welcher sich das Material plastisch verformt.

Simulation der gesamten Prozesskette im 3D-Druck

Die Frage ist: Wie steuert man den Prozess im 3D-Druck so, dass die entstehende Mikrostruktur den späteren Einsatzbedingungen des Bauteils genügt? Hinzu kommt: Bauteile und Werkstücke werden häufig aus verschiedenen metallischen Legierungen hergestellt: aus Stählen, Aluminiumlegierungen, Titanlegierungen in unterschiedlichen Zusammensetzungen und Mischungsverhältnissen. Jeder Legierungswerkstoff besitzt andere Eigenschaften und bildet andere Mikrostrukturen aus. Die optimalen Prozessparameter und Materialien zu finden und aufeinander abzustimmen, war bisher ein experimentelles und damit aufwändiges Unterfangen.

Forschende des Fraunhofer-Instituts für Werkstoffmechanik IWM beschreiten nun einen anderen Weg. „Da das Laser Powder Bed Fusion-Verfahren durch neue Materialien und Anforderungen immer komplexer wird, simulieren wir die gesamte Prozesskette“, erläutert Dr. Claas Bierwisch, Teamleiter am Fraunhofer IWM. „Auf diese Weise reduzieren wir nicht nur die Versuch-Irrtum-Schleifen, sondern können Variationen im Gesamtprozess schnell und effektiv bewerten und unerwünschte Effekte bei der Herstellung beseitigen.“

Das Besondere: Die Forschenden haben dazu verschiedene Simulationsmethoden aneinandergehängt. Mit der Diskrete-Elemente-Methode simulieren sie zunächst, wie die einzelnen Pulverpartikel mithilfe eines speziellen Werkzeugs, der Rakel, in den Bauraum eingebracht werden. Die darauffolgende „Smoothed Particle Hydrodynamics“ simuliert das Aufschmelzen der Pulverpartikel – berechnet werden sowohl Laserinteraktion und Wärmetransport als auch die Oberflächenspannungen, die zum Fließen der Schmelze führen. Auch die Schwerkraft und der Rückstoßdruck, der entsteht, wenn das Material verdampft, gehen in die Berechnung mit ein.

Heiß und kalt direkt nebeneinander

Für die Ausbildung der späteren Materialeigenschaften muss die Simulation ebenso die Mikrostruktur des Materials beschreiben. „Um diese Mikrostruktur zu analysieren, haben wir eine weitere Simulationsmethode angekoppelt, einen sogenannten zellulären Automaten. Dieser beschreibt, wie die metallischen Körner als Funktion vom Temperaturgradienten wachsen“, erläutert Bierwisch. Denn dort, wo der Laser auf das Pulver trifft, herrschen Temperaturen von bis zu 3000 °C – einige Millimeter davon entfernt ist das Material jedoch schon wieder kühl. Auch bewegt sich der Laser zum Teil mit einer Geschwindigkeit von mehreren Metern pro Sekunde über das Pulverbett. Das Material wird daher äußerst schnell aufgeheizt, kühlt dann allerdings auch innerhalb von Millisekunden wieder ab. All dies beeinflusst, wie sich die Mikrostruktur bildet. Am Ende steht die Finite-Elemente-Simulation: Mit ihr berechnet das Forscherteam Zugversuche in unterschiedliche Richtungen an einem repräsentativen Ausschnitt des Materials, um zu erfahren, wie der Werkstoff auf diese Belastungen reagiert.

„Während man im Experiment lediglich das Endergebnis untersuchen kann, können wir in der Simulation live zuschauen, was passiert. Wir erstellen also eine Prozess-Struktur-Eigenschafts-Beziehung: Erhöhen wir beispielsweise die Laserleistung, ändert sich die Mikrostruktur, was wiederum die Fließspannung des Werkstoffs signifikant beeinflusst. Das hat eine gänzlich andere Qualität als das, was im Experiment möglich ist“, begeistert sich Bierwisch. „Man kann quasi detektivisch Zusammenhänge erkennen.“

www.iwm.fraunhofer.de

Aktuelle Ausgabe
Titelbild medizin technik 6
Ausgabe
6.2022
LESEN
ABO
Newsletter

Jetzt unseren Newsletter abonnieren

Titelthema: 3D-Druck in der Medizintechnik

Das Design für den 3D-Druck erstellt künftig die KI

Alle Webinare & Webcasts

Webinare aller unserer Industrieseiten

Aktuelles Webinar

Multiphysik-Simulation

Medizintechnik: Multiphysik-Simulation

Whitepaper

Whitepaper aller unserer Industrieseiten

Anzeige

Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de