Startseite » Medizin » News »

Maschinelles Lernen für CT- und MRT-Diagnostik

News
Maschinelles Lernen für CT- und MRT-Diagnostik

Anzeige
Krebstherapie | Ein neues Programmpaket macht Veränderungen in Bildern von Tumoren sichtbar und erleichtert Medizinern die Arbeit mittels Deep Learning.

Ist ein Tumor im Laufe einer mehrmonatigen Behandlung geschrumpft, oder haben sich in der Zwischenzeit gar neue Geschwulste entwickelt? Um Fragen wie diese zu klären, werten Ärzte unter anderem CT- und MR-Aufnahmen aus. Meist werden die Tumoren dabei nur visuell bewertet und neue Geschwulste manchmal übersehen. „Unser Programmpaket erhöht die Sicherheit bei der Vermessung und Nachverfolgung der Tumoren“, erläutert Mark Schenk vom Fraunhofer-Institut für Bildgestützte Medizin MEVIS in Bremen. „Die Software kann zum Beispiel erfassen, wie sich das Volumen eines Tumors im Laufe der Zeit verändert und unterstützt beim Aufspüren neuer Geschwulste.“ Das Paket ist als Baukastensystem ausgelegt und kann Medizintechnik-Herstellern helfen, die Verlaufskontrolle zu automatisieren.

Das Besondere: Um die Ergebnisse zu verbessern, verwendet die Software Deep Learning – eine neue Art des maschinellen Lernens, die deutlich über bisherige Ansätze hinausgeht. Hilfreich ist das Verfahren unter anderem für die Segmentierung. So bezeichnen Experten jenen Arbeitsschritt, der bei CT- und MRT-Bildern die genauen Umrisse der Organe erfasst. Bei den bisher verfügbaren Segmentierungsprogrammen sucht der Rechner nach fest definierten Bildmerkmalen, etwa nach bestimmten Grauwert-Unterschieden. „Doch dabei kommt es nicht selten zu Fehlern“, erläutert Fraunhofer-Forscher Markus Harz. „Die Software ordnet dann Bereiche der Leber zu, die gar nicht zum Organ gehören.“ Diese Fehler müssen die Mediziner oft zeitaufwendig korrigieren.
Die neuen Deep-Learning-Ansätze versprechen bessere Ergebnisse und sollen den Ärzten helfen, kostbare Zeit zu sparen. Um die Funktionsweise ihrer selbstlernenden Software zu demonstrieren, trainierten sie die Fraunhofer-Forscher mit Hilfe von CT-Leberaufnahmen von 149 Patienten. Das Ergebnis: Je mehr Datensätze das Programm analysierte, umso besser konnte es die Leberumrisse automatisch identifizieren.
Ein weiteres Einsatzfeld ist die so genannte Bildregistrierung. Hier bringt eine Software verschiedene Aufnahmen, die zu unterschiedlichen Zeiten gemacht wurden, so zur Deckung, dass sie die Mediziner direkt vergleichen können. Hierbei kann sie das maschinelle Lernen bei einer besonders schwierigen Aufgabe unterstützen – dem Aufspüren von Knochenmetastasen in Aufnahmen des Oberkörpers, auf denen Hüftknochen, Rippen und Wirbelsäule zu sehen sind. Bislang werden diese Metastasen unter dem in der klinischen Praxis herrschenden Zeitdruck oft übersehen. Deep-Learning-Methoden können helfen, sie zuverlässig zu entdecken und damit die Therapiechancen zu verbessern.
Die Forscher setzen auf eine Kombination zwischen klassischen Ansätzen und Maschinenlernen: „Wir wollen bewusst das vorhandene Fachwissen nutzen, um das Deep Learning möglichst effektiv und zuverlässig einsetzen zu können“, betont Harz. Hierbei kann Fraunhofer MEVIS auf eine langjährige Erfahrung in der Umsetzung in die Praxis bauen: So findet sich ein in Bremen entwickelter Algorithmus für die hochpräzise Registrierung von Lungenbildern bereits heute in den Produkten mehrerer Medizinprodukte-Hersteller.
Die Experten stellen die Software vom 27.11. bis 2.12. auf der weltgrößten Radiologentagung, der RSNA 2016, in Chicago vor.
Anzeige
Aktuelle Ausgabe
Titelbild medizin technik 3
Ausgabe
3.2021
LESEN
ABO
Titelthema: Ultrakurzpulslaser

Ultrakurzpulslaser: Wie die Medizintechnik das hochpräzise Werkzeug nutzen kann

Newsletter

Jetzt unseren Newsletter abonnieren

Alle Webinare & Webcasts

Webinare aller unserer Industrieseiten

Aktuelles Webinar

Multiphysik-Simulation

Medizintechnik: Multiphysik-Simulation

Whitepaper

Whitepaper aller unserer Industrieseiten

Anzeige
Anzeige

Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de