Startseite » Ingenieursein »

Mehr Ausbeute durch andere Oberfläche

Solarzellen: Effizienter durch großflächige Nanostrukturierung
Mehr Ausbeute durch andere Oberfläche

Mehr Ausbeute durch andere Oberfläche
Polyimidfolie, die mit dem Verfahren der Direkten Laserstrahlinterferenzstrukturierung hergestellt wurde Bild: Fraunhofer IWS Dresden
Der Wirkungsgrad einer Solarzelle lässt sich durch die Oberflächenstruktur deutlich erhöhen. Ein neues Strukturierungsverfahren für organische Solarzellen ist sowohl schnell als auch effizient und damit für den industriellen Einsatz bestens geeignet.

Die organische Photovoltaik durchläuft in den letzten Jahren enorme Fortschritte bei der Verbesserung der photoelektrischen Effizienz. Sie bietet zudem die Möglichkeit. auf große und flexible Flächen skalierbar zu arbeiten. Für die weitere Verbesserung des Wirkungsgrades ist es aber notwendig, zusätzlich zu den Eigenschaften der organischen Materialien die optischen Eigenschaften der Solarzellen zu optimieren. Mikro- und nanostrukturierte Oberflächen sind bei organischen Solarzellen besonders vorteilhaft, da sie die Effizienz von Solarzellen erhöhen, indem sie den optischen Weg des einfallenden Lichts im aktiven Medium verlängern.

Ein besonders schnelles und effizientes Verfahren zur Strukturierung mit hoher Auflösung ist das am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden praktizierte Verfahren der Direkten Laserstrahlinterferenzstrukturierung (DLIP: Direct Laser Interference Patterning). Damit lassen sich verschiedenste Materialien wie Metalle, Keramiken oder Polymere in einem Prozessschritt mit Mikro- oder Nanostrukturen versehen. Um eine Interferenzstruktur zu erzeugen, werden mindestens zwei kollimierte, kohärente Laserstrahlen auf der Substratoberfläche zur Überlagerung gebracht. Zur Interferenz kommt es im gesamten Überlappungsvolumen der Laserstrahlen, die mit einem einzigen Puls Flächen von mehreren Zentimetern Breite abdecken können. Somit ergeben sich effektive Strukturierungsgeschwindigkeiten von einigen Quadratzentimetern pro Sekunde.
In enger Zusammenarbeit mit dem Institut für Angewandte Photophysik (IAPP) der Technischen Universität Dresden wurde der Einfluss der Strukturierung von PET-Folien mittels DLIP auf die Verbesserung der Effizienz von organischen Solarzellen untersucht. Es zeigt sich, dass Solarzellen auf strukturierten Substraten eine deutliche Leistungssteigerung aufweisen. Solarzellen mit einer Linienstruktur konnten eine Effizienzsteigerung von etwa 10 % gegenüber dem unstrukturierten PET-Substrat erreichen. Eine hexagonale oder Punktestruktur erwies sich bei organischen Solarzellen auf PET als besonders vorteilhaft und führt zu einem Effizienzanstieg von 21 %.
Für die industrielle Umsetzung des Verfahrens entstand am Fraunhofer IWS Dresden ein kompaktes Laserinterferenzsystem, das die Strukturierung innerhalb eines in-line Prozesses ermöglicht. Das System und Verfahrensprinzip stellen die Wissenschaftler vom 12. bis 14. Juni 2012 auf der diesjährigen Lasys in Stuttgart aus (Stand 4.C31).
Aktuelle Ausgabe
Titelbild medizin technik 2
Ausgabe
2.2024
LESEN
ABO
Newsletter

Jetzt unseren Newsletter abonnieren

Titelthema: PFAS

Medizintechnik ohne PFAS: Suche nach sinnvollem Ersatz

Alle Webinare & Webcasts

Webinare aller unserer Industrieseiten

Aktuelles Webinar

Multiphysik-Simulation

Medizintechnik: Multiphysik-Simulation

Whitepaper

Whitepaper aller unserer Industrieseiten


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de