Startseite » 3D-Druck »

Wie sich im 3D-Druck Damaszener Stahl herstellen lässt

Additive Fertigung
Wie sich im 3D-Druck Damaszener Stahl herstellen lässt

Wie sich im 3D-Druck Damaszener Stahl herstellen lässt
Beim Verbundmaterial, das die Forscher im 3D-Drucker erzeugt haben, sind die abwechselnd harten (hellen) und duktilen (dunklen) Schichten deutlich zu erkennen – die typisch für den Damaszenerstahl sind
(Bild: Frank Vinken)
Durch geschickte Temperaturvariation beim 3D-Druck lässt sich ein Verbundwerkstoff mit unterschiedlich harten Metallschichten erzeugen. Seine Eigenschaften sind ähnlich denen, die man von einem Damaszener Stahl erwarten würde.

Das Material genießt einen legendären Ruf. Damaszener Stahl ist gleichzeitig hart und zäh, weil er aus Schichten unterschiedlicher Eisenlegierungen besteht. Das machte ihn im Altertum zum Material der Wahl vor allem für Schwertklingen. Jetzt hat ein Team des Max-Planck-Instituts für Eisenforschung in Düsseldorf und des Fraunhofer-Instituts für Lasertechnik in Aachen ein Verfahren entwickelt, mit dem man Stahl im 3D-Drucker schichtweise fertigen und dabei die Härte jeder einzelnen Lage gezielt einstellen kann. Solche Verbundwerkstoffe könnten für den 3D-Druck von Bauteilen in der Luft- und Raumfahrt oder von Werkzeugen interessant sein.

Inhaltsverzeichnis

1. Damaszener Stahl: Ein Werkstoff, der hart und zäh ist
2. Laserstrahl im 3D-Druck beeinflusst die Kristallstruktur
3. Laserstrahl erwärmt das gedruckte Material beim 3D-Druck nochmals
4. Pausen im 3D-Druckprozess ermöglichen die Bildung härtender Ausscheidungen
5. Objekte mit weichem Kern und harter Oberfläche beim 3D-Druck erzeugen
6. 3D-Druck des Damaszener Stahls für Werkzeuge interessant

 

Damaszener Stahl: Ein Werkstoff, der hart und zäh ist

Eigentlich war die Idee, die zum Damaszener-Stahl führte, aus der Not geboren und zur Legende geworden: Schmiede des Altertums konnten die Eigenschaften von Eisenlegierungen nur über deren Kohlenstoffgehalt beeinflussen. So erhielten sie entweder einen weichen und zähen oder einen harten, aber spröden Stahl. Vor allem für Schwerter war aber ein zähes und hartes Material gefragt, damit die Klingen in einer Schlacht nicht brachen oder sich die Kämpfer nicht aus dem Getümmel zurückziehen mussten, um ihre Klingen wieder geradezubiegen.

Schon keltische Schmiede kombinierten daher verschiedene Eisenlegierungen, anfangs vielleicht nur, um das wertvolle Eisen wiederzuverwerten, und erhielten so den Stoff, der später als Damaszener Stahl bekannt wurde. Den Namen verdankt er dem Handelsplatz, über den der Verbundwerkstoff orientalischer Herkunft nach Europa kam. Doch während indischer und arabischer Damaszener Stahl durch einen ausgeklügelten Verhüttungsprozess entstand, entwickelten europäische Schmiede die Kunst, zwei Legierungen zu vielen dünnen Schichten zu falten. Der schichtartige Aufbau von Damaszener Stahl ist dabei in der Regel auch optisch an einem charakteristischen Streifenmuster zu erkennen.

Laserstrahl im 3D-Druck beeinflusst die Kristallstruktur

Zwar gibt es heute Eisenlegierungen, die zugleich hart und zäh sind, sie lassen sich aber oft nicht gut mit 3D-Druckern, dem Mittel der Wahl für viele komplexe oder individuell gestaltete Bauteile, verarbeiten. Deshalb haben Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Eisenforschung und des Fraunhofer-Instituts für Lasertechnik eine Technik entwickelt, mit der sich direkt beim 3D-Druck aus einem einzigen Ausgangsmaterial ein Stahl erzeugen lässt, der abwechselnd aus harten und duktilen, das heißt weichen Schichten aufgebaut ist, – eine Art Damaszener Stahl also.

„Damit können wir bereits während des 3D-Drucks gezielt die Mikrostruktur der einzelnen Schichten verändern, sodass das finale Bauteil die gewünschten Eigenschaften erhält – und dies ganz ohne nachträgliche Wärmebehandlung des Stahls“, sagt Philipp Kürnsteiner, Postdoktorand am Max-Planck-Institut für Eisenforschung.

3D-Drucker für die additive Fertigung, wie die Technik im Fachjargon heißt, haben innerhalb weniger Jahre Einzug in viele industrielle Bereiche gehalten. Neben Kunststoffteilen lassen sich damit längst auch Metallgegenstände herstellen. Dabei wird die jeweilige Legierung in fein pulverisierter Form zugeführt, von einem Laserstrahl geschmolzen und dann Schicht für Schicht auf dem herzustellenden Werkstück aufgetragen.

Laserstrahl erwärmt das gedruckte Material beim 3D-Druck nochmals

Der Laserstrahl ermöglicht es aber nicht nur, das jeweilige Material zu schmelzen. Mit ihm lässt sich, ganz nebenbei, auch die oberste Schicht des bereits wiedererstarrten Metalls erwärmen. Genau das nutzte das Team um die Düsseldorfer Max-Planck-Forscher, um in einzelnen Metallschichten gezielt die Kristallstruktur des Stahls zu verändern – und so die mechanischen Eigenschaften zu beeinflussen, ohne die chemische Zusammensetzung zu ändern.

Dafür entwickelten sie eigens eine Legierung, die aus Eisen, Nickel und Titan besteht. Zunächst ist diese Legierung relativ weich. „Aber unter bestimmten Voraussetzungen bilden sich jedoch kleine Nickel-Titan-Mikrostrukturen, die dann für eine besondere Härte sorgen“, erklärt Kürnsteiner. „Diese Ausscheidungen behindern bei einer mechanischen Belastung die für eine plastische Verformung charakteristischen Verschiebungen innerhalb des Kristallgitters – die so genannten Versetzungen.“

Pausen im 3D-Druckprozess ermöglichen die Bildung härtender Ausscheidungen

Um die Nickel-Titan-Strukturen erzeugen zu können, unterbrachen die Forscher den Druckprozess nach jeder neu aufgetragenen Schicht für eine bestimmte Zeit. Dabei kühlte sich das Metall auf unter 195 °C ab. „Unterhalb dieser Temperatur setzt im Stahl eine Umwandlung der Kristallstruktur ein“, erklärt Eric Jägle, Leiter der Gruppe Legierungen für die Additive Fertigung am Max-Planck-Institut für Eisenforschung und seit Januar 2020 auch Professor an der Universität der Bundeswehr München. „Es entsteht die so genannte Martensit-Phase, und nur in dieser können die Nickel-Titan-Mikrostrukturen entstehen.“ Damit sich die Ausscheidungen auch wirklich bilden, ist aber eine erneute Erwärmung notwendig. Hierfür nutzen die Forscher die Laserenergie, mit der die nächste Schicht gedruckt wird.

Intrinsische Wärmebehandlung nennen die Wissenschaftler diesen zusätzlichen Effekt durch den Laserstrahl des 3D-Druckers. Lagen, die ohne Pause direkt mit der nächsten Schicht überzogen wurden, bleiben hingegen weicher, weil sie zu diesem Zeitpunkt noch nicht als Martensit vorliegen. Von den mechanischen Eigenschaften des so produzierten Materials ist Kürnsteiner beeindruckt: „Die Versuche haben eine hervorragende Kombination von Festigkeit und Duktilität bestätigt.“

Objekte mit weichem Kern und harter Oberfläche beim 3D-Druck erzeugen

Um die Mikrostrukturen während des 3D-Druckens zu beeinflussen, eignen sich verschiedene Stellschrauben des Prozesses. Zusätzlich oder statt der Pausenzeit, die das Team in der aktuellen Studie variiert hat, lasse sich die Bildung des Martensits und die anschließende Härtung durch die Ausscheidungen auch steuern, indem man die Laserenergie, den Laserfokus oder die Druckgeschwindigkeit variiere oder externe Heiz- und Kühltechniken einsetze, erklärt Eric Jägle.

In ihren Experimenten stellen die Forscher würfel- oder quaderförmige Stahlstücke mit Seitenlängen von wenigen Zentimetern her. Die dabei gewonnenen Erkenntnisse lassen sich dann auch auf Objekte mit komplexeren Geometrien übertragen, für die der computergesteuerte 3D-Druck interessant ist.

3D-Druck des Damaszener Stahls für Werkzeuge interessant

Der Damaszener-artige Stahl mit den periodisch wechselnden Schichten ist aber nur ein Beispiel für die Möglichkeit, die Mikrostruktur einer Legierung bereits während des Herstellungsprozesses lokal zu beeinflussen. Zum Beispiel sei es genauso gut möglich, Werkzeug-Bauteile mit einem durchgehend weichen Kern zu erschaffen, die dann von einer harten, abriebfesten äußeren Schicht umgeben sind, erklärt Eric Jägle: „Dank unseres Konzepts der lokalen Kontrolle ließe sich das in einem einzigen Fertigungsschritt realisieren – ganz ohne die bisher für eine Oberflächenhärtung nötigen weiteren Verfahrensschritte.“ Denkbar, so die Forscher, sei es eventuell auch, mit der Technik nicht nur die Härte, sondern auch weitere Eigenschaften wie etwa Korrosionsbeständigkeit lokal gezielt einzustellen.

Philipp Kürnsteiner weist schließlich noch auf einen Paradigmenwechsel, der mit dem neuen Ansatz im Design von Legierungen verbunden ist: „Bisher ist es üblich, im 3D-Druck konventionelle Legierungen zu verwenden. Viele bekannte Stähle sind aber für die additive Fertigung nicht optimal geeignet. Unser Ansatz ist es nun, Legierungen gerade so zu entwickeln, dass sich mit ihnen das volle Potenzial des 3D-Drucks ausschöpfen lässt.“


Kontakt zu den Forschern
Max-Planck-Institut für Eisenforschung GmbH
Max-Planck-Str. 1
40237 Düsseldorf
E-Mail-Adresse: info@mpie.de
Website: www.mpie.de

Aktuelle Ausgabe
Titelbild medizin technik 1
Ausgabe
1.2024
LESEN
ABO
Newsletter

Jetzt unseren Newsletter abonnieren

Titelthema: PFAS

Medizintechnik ohne PFAS: Suche nach sinnvollem Ersatz

Alle Webinare & Webcasts

Webinare aller unserer Industrieseiten

Aktuelles Webinar

Multiphysik-Simulation

Medizintechnik: Multiphysik-Simulation

Whitepaper

Whitepaper aller unserer Industrieseiten


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de